Koko Giữ trọn tuổi 25
Bán tài liệu, giáo án tất cả các môn toán, lý,hoá,sinh,văn,sử,địa,tiếng anh, công dân,
Tháp Văn Xương

Chuyên đề khoảng cách hình học 11

Thứ năm - 22/04/2021 10:42
Chuyên đề khoảng cách hình học 11, Khoảng cách hình học 11, Chuyên đề khoảng cách từ điểm đến mặt phẳng, Chuyên đề khoảng cách trong không gian ViOLET lớp 11, Bài tập về khoảng cách từ điểm đến mặt phẳng lớp 11, Chuyên de khoảng cách lớp 11, Bài tập về khoảng cách lớp 11 nâng cao, Bài tập khoảng cách trong đề thi Đại học, Chuyên de Hình học lớp 11
Chuyên đề khoảng cách hình học 11
Chuyên đề khoảng cách hình học 11
Chuyên đề khoảng cách hình học 11, Khoảng cách hình học 11, Chuyên đề khoảng cách từ điểm đến mặt phẳng, Chuyên đề khoảng cách trong không gian ViOLET lớp 11, Bài tập về khoảng cách từ điểm đến mặt phẳng lớp 11, Chuyên de khoảng cách lớp 11, Bài tập về khoảng cách lớp 11 nâng cao, Bài tập khoảng cách trong đề thi Đại học, Chuyên de Hình học lớp 11 

KHOẢNG CÁCH TRONG KHÔNG GIAN


1. Khoảng cách từ một điểm đến một đường thẳng
d(A,\Delta )=AH với AH \bot \Delta  tại H
2. Khoảng cách từ một điểm đến một mặt phẳng
d(A,(P))=AH với H là hình chiếu của A lên (P)
3. Khoảng cách giữa đường thẳng và mp song song
Cho đường thẳng \Delta  và mp(P):\Delta //(P). Khi đó,
d(\Delta ,(P))=d(A,(P)) trong đó A là điểm bất kỳ trên (P)
4. Khoảng cách giữa hai mp song song
Cho hai mặt phẳng (P), (Q): (P)//(Q). Khi đó.
d((P),(Q))=d(A,(Q))=d((P),B) trong đó A là điểm bất kỳ trên (P) và B là điểm bất kỳ trên (Q)
5. Khoảng cách hai đường thẳng chéo nhau
a/Định lý: Cho hai đường thẳng chéo nhau a, b. Khi đó, tồn tại và duy nhất đường thẳng c cắt cả a, b đồng thời vuông góc với a, b
+) c: gọi là đường vuông góc chung của a, b
+) Giả sử M, N lần lượt là giao điểm của c với a và b thì MN gọi là đoạn vuông góc chung của a, b
b/Định nghĩa: Khoảng cách giữa hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung
c/Phương pháp xác định đường vuông góc chung của 2 đường thẳng chéo nhau a, b
d(a,b)=d((P),(Q)) trong đó,

PP1: \left\{ \begin{align} & \text{a}\subset \text{ (P)} \\ & \text{b}\subset \text{(Q)} \\ & \text{(P)//(Q)} \end{align} \right.

Cụ thể, ta thực hiện theo các bước sau
B1: Qua a dựng một mp(P)//b
B2: Trên b lấy điểm K, dựng KH vuông góc (P) tại H
B3: Từ H kẻ đường thẳng //b và đường thẳng này cắt a tại I
Từ I kẻ IJ//kh cắt b tại J
\Rightarrow IJ là đường vuông góc chung của a, b
PP2: (Áp dụng với hai đường thẳng vừa chéo nhau, vừa vuông góc nhau)
B1: Qua a dựng mp (P) vuông góc b
B2: Xác định giao điểm J giữa b và (P)
B3: Trong (P) từ J kẻ JI vuông góc a tại I
\Rightarrow IJ là đường vuông góc chung của a, b

DẠNG I: Xác định và tính khoảng cách từ một điểm đến đường thẳng , mp

Bản chất: Xác định và tính khoảng cách từ A đến mp(P)
Tìm mp(Q) đi qua A và vuông góc (P)
Xác định giao tuyến a giữa (P), (Q)
Trong (Q) kẻ đường thẳng qua A và vuông góc a tại A
\Rightarrow d(A,(P))=AH
Bài 1. Cho tứ diện ABCD có AB vuông góc (BCD): BC=3a, CD=4a, AB=5a, tam giác BCD vuông tại C
Tính:
                        1/d(A,(BCD))                                    2/d(B,(ACD))                                    3/d(A,CD)
Bài 2. Cho hình hộp chữ nhật ABCD.A'B'C'D'với ba kích thước a, b, c. Tính d(B, (ACC'A')
Bài 3.Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh khoảng cách từ B,C,D,A',B',D' tới AC' bằng nhau. Tính khoảng cách đó?
Bài 3. Cho hình chóp SABCD, đáy ABCD là nửa lục giác đều mội tiếp đường tròn đường kính CD=2a. SA vuông góc đáy và SA=a\sqrt{6}. Xác định và tính
1/ d(A,(BCD))                                                                                                           2/d(B,(BCD))

Dạng II: Tính khoảng cách giữa đường thẳng và mp//, giữa hai mp //

Bài 1. Cho tứ diện ABCD: AB vuông góc (BCD), AB=5a. BC=3a, CD=4a. Gọi M, N lần lượt là trung điểm AC, AD
1/ Tính d(MN, (BCD))
2/Gọi P là mp chứa MN và đi qua trung điểm K của AB. Tính d(MN,(BCD))
Bài 2. Cho hình chóp cụt tứ giác đều ABCD.A'B'C'D'. Đáy lớn ABCD có cạnh bằng a, đáy nhỏ A'B'C'D' có cạnh bằng b, góc giữa mặt bên và đáy bằng 60^{o}. Tính khoảng cách giữa hai mặt của hình chóp cụt

Dạng III. Khoảng cách giữa hai đường thẳng chéo nhau

Bài 1. Cho tứ diện đều ABCD cạnh a. Gọi M, N lần lượt là trung điểm AB, CD
1/ Chứng minh rằng MN là đoạn vuông góc chung AB, CD
2/ Tính d(AB,CD)
Bài 2. Cho hình lập phương ABCD.A'B'C'D' cạnh a. Tính d(BC',CD')
Bài 3. Cho tứ diện OABC có cạnh OA, OB, OC đôi một vuông góc và OA=OB=OC=a. Gọi I là trung điểm BC
1/ Xác định và tính đọ dài đoạn vuông góc chung OA, BC
2/Tính d(IA,OC)

 

Tổng số điểm của bài viết là: 10 trong 2 đánh giá

Xếp hạng: 5 - 2 phiếu bầu
Click để đánh giá bài viết

  Ý kiến bạn đọc

Sữa Momcare
tỏi đen
Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây