Liên hệ zalo

Vì sao trong các buổi thi đấu, khi tính điểm trung bình người ta phải loại bỏ các điểm số quá cao hoặc quá thấp?

Thứ sáu - 23/09/2022 09:05
Vận dụng quy luật lượng chất vào thực tiễn công việc, Quy luật lượng chất và sự vận dụng quy luật lượng chất vào quá trình học tập của sinh viên hiện nay, Cuộc thi online học sinh với An toàn thông tin 2022 đáp án, Tiểu luận vận dụng quy luật lượng và chất trong quá trình học tập và rèn luyện của sinh viên, cuộc thi an toàn thông tin'' năm 2022, Đáp An thi an toàn thông tin, Cuộc thi An toàn thông tin mạng, Vận dụng quy luật lượng chất trong giáo dục mầm non
Mười vạn câu hỏi vì sao Toán học
Mười vạn câu hỏi vì sao Toán học
Vì sao trong các buổi thi đấu, khi tính điểm trung bình người ta phải loại bỏ các điểm số quá cao hoặc quá thấp?

Trong một cuộc thi hát, uỷ viên chấm thi thường tuyên bố điểm số 9,00, 9,50, 9,55, 9,6, 9,75, 9,90. Nhưng khi tính điểm bình quân người ta đã bỏ các điểm số quá bé và quá lớn và tính điểm bình quân như sau:


Vì sao người ta lại bỏ đi các điểm quá cao và quá thấp? Đó là để loại bỏ các điểm khác thường. Điểm khác thường là những số quá lớn hoặc quá bé so với số bình quân.

Thông thường các điểm khác thường là do trọng tài sơ ý và các yếu tố tâm lí hoặc quá phẫn nộ hoặc quá phấn chấn gây nên. Để giảm bớt các điểm khác thường làm ảnh hưởng đến độ chính xác của kết quả điểm bình quân, việc loại bỏ các điểm khác quá cao hoặc quá thấp là hợp lí. Điều này có liên quan đến khái niệm số trung vị trong toán học. Nhưng thế nào là số trung vị? Ta lại thử xem xét ví dụ trên kia, cứ theo thứ tự sắp xếp của sáu số như trên ta lấy bình quân của ba số hoặc bốn số thì điểm bình quân sẽ là số trung bình. (9,55 + 9,6)/2=9,575

Nếu số uỷ viên của hội đồng chấm thi là số lẻ, nếu lấy trung bình từ năm số đứng trước, thì số trung vị sẽ là 9,55 tức là điểm số thứ ba. Khi xử lí tìm số trung vị với các con sốở bên trái số trung bình, chỉ cần không lớn hơn số trung vị thì cũng không làm thay đổi số trung vị. Khi xử lí với các sốở bên phải số trung vị, chỉ cần không cần nhỏ hơn số trung vị thì cũng không làm thay đổi giá trị số trung vị. Từ đó có thể thấy, số trung vị không chịu ảnh hưởng của các số quá lớn hoặc quá bé cực đoan, còn điểm bình quân thì chịu ảnh hưởng của mỗi giá trị trong các số. Vì vậy số trung vị có lúc phản ảnh mức độ bình quân. Ví dụ trong một lớp học có 10 bạn tham gia một cuộc thi, có hai người bị điểm 0. Số điểm của nhóm người sắp xếp như sau: 0, 0, 65, 69, 70, 72, 78, 81, 85, 89. Điểm bình quân sẽ là:

Như vậy ngay bạn có điểm số 65 đã vượt điểm bình quân như vậy là có điểm số trên trung bình.
Đương nhiên không phải như vậy. Nếu loại bỏ hai người bị hỏng thi, thì anh chàng có điểm thi 65 sẽở vị trí cuối bảng. Như vậy điểm bình quân không phản ánh đúng mức độ trung bình. Thế nhưng nếu loại bỏ điểm hỏng thì lấy điểm bình quân của tám số còn lại liệu có được không? Đương nhiên không được. Bây giờ chỉ lấy điểm trung vị là thích hợp. Điểm trung vị là trung bình giữa điểm số thứ năm và điểm số thứ sáu, tức 70 + 72 / 2 = 71. Số điểm lớn hơn 71 là trên trung bình, nhỏ hơn 71 là dưới trung bình. Như vậy điểm trung vị mới phản ánh đúng mức trung bình.
 
 
Đương nhiên số trung bình cũng có ưu điểm riêng tức là cần phải chú ý đến tất cả các số. Việc loại bỏ các điểm quá lớn và quá bé là đã kết hợp được ưu điểm của hai phương pháp: vừa loại bỏ giá trị dị thường vừa phát huy được tác dụng của phe đa số trong hội đồng chấm thi nên đó là phương pháp hợp lí.

Từ khoá: Số bình quân; Điểm trung vị.
 

Tổng số điểm của bài viết là: 5 trong 1 đánh giá

Xếp hạng: 5 - 1 phiếu bầu
Click để đánh giá bài viết

  Ý kiến bạn đọc

Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây