Liên hệ zalo

Vì sao trong ba số lẻ liên tiếp nhất định có hai số nguyên tố cùng nhau?

Thứ hai - 02/08/2021 23:05
Vì sao trong ba số lẻ liên tiếp nhất định có hai số nguyên tố cùng nhau?
Vì sao trong ba số lẻ liên tiếp nhất định có hai số nguyên tố cùng nhau?
Vì sao trong ba số lẻ liên tiếp nhất định có hai số nguyên tố cùng nhau?

Vì sao trong ba số lẻ liên tiếp nhất định có hai số nguyên tố cùng nhau?


Với hai số nguyên bất kì nếu chúng không có ước số chung nào khác ngoài số 1, người ta gọi chúng là các số nguyên tố cùng nhau. Nếu trong ba số có hai số bất kì nguyên tố cùng nhau thì người ta gọi chúng là các số nguyên tố cùng nhau song song hay các số nguyên tố cùng nhau từng đôi một.

Tại sao với 3 số lẻ liên tiếp bất kì nhất định có hai số nguyên tố cùng nhau?

Chúng ta đã biết số lẻ là số không chia hết cho 2 vì vậy với số lẻ ta chỉ có ước số là các số lẻ.

Ví dụ số 15 chỉ có các ước số 1, 3, 5, 15 là các số lẻ.

Nếu hai số cùng là bội số của một sốp thì hiệu của chúng cũng là bội số của p.

Ví dụ 100 và 15 đều là bội số của 5 thì hiệu số của hai số là 85 cũng là bội số của 5.

Từ các lí luận trên đây chúng ta có thể giải đáp câu hỏi “vì sao” đã đề ra.

Giả sử ta có 3 số lẻ liên tiếp, ta chọn một số là a thì số lớn sẽ là b = a + 2 hoặc b = a + 4. Nếu a b có ước số chung là p thì p phải là ướcsố của hiệu sốb - a, có nghĩa là p phải là ước số của 2 hoặc 4. Vì p = 1 nên ab chỉ có ước số chung là 1. Từ đó nếu a, b là số lẻ thì ước số chung của chúng chỉ là 1. Vì ab là các số lẻ nên chúng không có ước số chung là số chẵn. Chúng ta đã chứng minh ab chỉ có ước số chung là 1 nên a và b phải là các số nguyên tố cùng nhau. Với ba số lẻ liên tiếp bất kì luôn có hai số nguyên tố cùng nhau.

Từ khoá: Ước số, ước số chung;Số nguyên tố cùng nhau.

Vì sao hai số hơn nhau không quá 2n lần trong 2n + 1 số tự nhiên khác nhau nhất định có hai số nguyên tố cùng nhau?

Câu trả lời đơn giản nhất là trong n + 1 số tự nhiên lớn hơn nhau không quá 2n lần nhất định sẽ có hai số cạnh nhau, hai số cạnh nhau tất nhiên phải là các số nguyên tố cùng nhau. Hai số cạnh nhau nếu có ước số chung là p thì p nhất định phải bằng 1. Thế tại sao trong n + 1 số tự nhiên không lớn hơn nhau quá 2n lần nhất định phải có hai số cạnh nhau? Theo điều kiện đặt ra trong tập hợp từ các số tự nhiên số các số nguyên tố phải nhỏ hơn hoặc cùng lắm là bằng 2n. Vả lại trong tập hợp không có các số cạnh nhau thì số các số nguyên tố tối đa chỉ là n. Ví dụ các tập hợp không có các số cạnh nhau là các tập hợp: {1, 3, 5, ...2n - 1} hoặc {2, 4, 6, ...2n}. Nếu ta lại thêm vào các tập hợp trên một số nào đó theo thứ tự các số tự nhiên thì tất nhiên phải là số cạnh nhau của n + 1 số trong mỗi tập hợp và tập hợp mới sẽ là tập hợp có các số cạnh nhau. Người chứng minh luận đề này là nhà toán học Hungari Potard lúc ông mới 12 tuổi.
 

Tổng số điểm của bài viết là: 5 trong 1 đánh giá

Xếp hạng: 5 - 1 phiếu bầu
Click để đánh giá bài viết

  Ý kiến bạn đọc

Những tin mới hơn

Những tin cũ hơn

Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây